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Aperture Coupling Between D1e1ectr1c Image
Lines

INDER J. BAHL, SENIOR MEMBER, IEEE, AND PRAKASH BHARTIA, SENIOR MEMBER, IEEE

A bstract— Aperture coupling between dielectric image lines is used to
develop a design technique for directional couplers at millimeter-wave
frequencies. Expressions for coupling coefficients and directivity, employ-
ing coupling between image lines through apertures in the common ground
plane are developed. The design procedure is illustrated by application to
10-, 20-, and 30-dB directional couplers in rectangular image lines w1tl1

circular aperture coupling.

]: IELECTRIC IMAGE lines and their applications in
active and passive devices for millimeter-wave in-

tegrated circuits have been reported in the literature [1]}-[9].

I. - INTRODUCTION
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In this paper a design technique for directional couplers
using dielectric image lines is given. Initially, a brief account
of transmission-line properties of the dielectric image line
is presented together with coupling between image lines
through apertures in the common ground plane. Expres-
sions are derived for the directivity and coupling coeffi-
cients and design curves are presented. Finally, the design
procedure developed 'is illustrated by application to the
design of 10-, 20-, and 30-dB directional couplers.

II. IMAGE-LINE PROPERTIES

The geometry of an image line, as shown in Fig. 1,
comprises a rectangular dielectric slab of relative permittiv-
ity €, backed by a perfectly conducting ground plane. The
main transverse field components of the E),, modes are E,
and H,. Omitting the r—z dependence, exp [ j(wt—k,z)],
where w is the angular frequency and k, is the propagation
constant in the z direction; the field components inside and
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Fig. 1.

Fig. 2. Guide wavelength for various EJ,, modes as a function of the
normalized guide thickness B. ¢, =2.5.

outside the dielectric slab are given by [1]

(1)
()
(3)

E,=Eycosk,xcosk,y, |x|<a, y<b

E,=Ejcosk,acosk,ye o=, |x|>q, y<b

E,=Ejcosk, xcosk,be o>, |x|<a, y>b

E, =0, |x|>a,y>b (4)
H,=——E, (5)
where

_ [Ee 1 _ [Eo ke
= €0 Megr € k, (6)

and k,, k,, and k,,, ko are the propagation constants in
the x and y directions in the dielectric and air, respectively.

A typical set of dispersion curves for £, modes giving
the ratio of free-space wavelength A, to the guide wave-
length A, as a function of normalized guide dimensions B
(=4bye,—1 /A,) is shown in Fig. 2. The relative permit-
tivity of the dielectric slab is selected to be 2.5 and is
“optimum” dielectric constant value for maximum band-
width cosiderations [2].

III. APERTURE COUPLING

Dielectric image-line couplers so far reported in the
literature employ a parallel coupled line approach. This
type of coupler tends to be nmarrow band because the
coupling is a result of the interference of two waveguide
modes known as the even (symmetric) and odd (asymmet-
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Fig. 3. (a) Aperture coupling configuration between dielectric image
lines. (b) Ilustration of the coupled waves through an aperture.

ric) modes which propagate at different velocities. This
difference in velocities also degrades the directivity char-
acteristics. An alternative approach to the above is to use
aperture coupling through the common ground plane, as
shown in Fig. 3. This technique has been successfully used
at microwave frequencies for closed waveguide directional
couplers. The analysis, also valid for open waveguide struc-
tures is applied here to the dielectric image line neglecting
the effect of radiation losses from the coupling holes or
slots.

The electromagnetic coupling through small apertures in
a common wall of rectangular waveguides has been well
described in the literature [10]-[12]. The coupling from
one line to the other may be calculated by evaluating the
dipole moments associated with the aperture fields. Here
for the sake of simplicity we assume that both dielectric
guides are identical.

Consider two image lines having a common ground
plane (Fig. 3) and coupled through an aperture of major
dimension much less than the guide wavelength in one of
the guides. Let «, and «a,, be the electric and magnetic
polarizabilities of the aperture, respectively. The fields
radiated by the electric dipole may be expressed as [13]

_ AET, z>0

E,=y = (7)
AE™, z<0

— AHT, z>0

H=y""__ (8)
A,H™, z<0

whereas that radiated by the magnetic dipole are

— B E™, z>0

E,={ '__ 9)
B,E™, z<0

_  |BHT, >0

H,=1""_ (10)
B,H ™, z<0

where the superscript + denotes propagation along the
positive z direction and superscript — indicates propaga-
tion along the negative z direction. Considering only the

E?}, mode, the field components E¥, E~, H*, and H ™ in
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the guide are given by (neglecting the H, components)

E*=pcosk, xcosk,ye k7, z>0 (11a)
E~=pcosk, xcosk,yel**,  z<0 (11b)
— 1. s

H+:—;7*xcoskxxcoskyye k2 z>0 (1lc)
ﬁ_:%XCoskxxcoskyyef"zz, z<0.  (11d)

The expressions for 4,, 4,, B,, and B, may be written as
[10]

(12a)

(12b)
where p is the free-space permeability and P, is defined at
z=0 as

P, =2fb¢ EYXH™" tdxdy

1 sin (2k,a)
= H {a + ) kx b+
The electric and magnetic polarization vectors on the aper-

ture which is located at x=x,, y=0, z=0 are defined as
[10]

2k

y

sin(2kyb)}. (13)

P=—eg,a, E=—pee,a,c08 (k, xq) (14)
where ¢, is the free-space permittivity and

M=—a, H=%a,cos(k x,) /7.

(15)

From (11), (12a), (13)-(15), the expressions for 4,, 4,, B,,
and B, on the aperture become

A =4, =jwege,an

cos? (k,xy)

[a+0.5sin(2k,a) /K, [b+0.5sin (2k b) /K|

(16)

B——B, = Jw;;oam

cos? (k,x,)

[a+0.5sin(2k,a) /K, [b+0.5sin (2k,b) /k,]

(17)

The total field radiated into the lower guide is readily
evaluated from

e (4,+B)E™, z>0 (18)
(4,+B,)E~, 2<0

= (4,+B)H", z>0 (19)
(A, +B,)H ™, z<0.

From (16)-(18), it can be shown that 4, + B, #0, which
means that for the single hole case, there is always radia-
tion in the forward direction, i.e., towards port (3) (Fig. 3
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Fig. 4. Variation of the angle 6, between the axes of two image lines,
versus B for no coupled waves in the backward direction ¢, =2.5, Ef;
mode,

(b)). For no radiation in the backward direction, i.e.,
A, + B, =0, from (16), (17), we get
€ a

r—%n (20)

2
Regr  %e

The expressions for electric and magnetic polarizabilities
of commonly used aperture configurations are given in
[13]. Thus it is possible to realize 4, + B, =0 by selecting
«, and a,,. However, for a given aperture it is also possible
to obtain 4, +B, =0 by decreasing the value of the mag-
netic polarization by rotating the lower guide by an angle
6. Thus the magnetic dipole component is reduced by a
factor cos @, and (20) becomes

€, _a,
=—"cosé. 21
ngff &e ( )

For a circular aperture

0=cos_’( 5'2 )

2ney

(22)

The variation of the angle § as a function of B for various
values of a /b ratio is shown in Fig. 4.

A. Coupling

The coupling coefficients for a circular aperture of radius
r are defined by

C; =—20log|(A4, +B cos8)|

$wricos? (k,xq) [ deqe,n+pgcos /1]

sin (2k,a) sin (2k,b)
at—"—+ —
2k, 2k,

= —20log

b+

(23)
C,=—20log|(A4, +B,cos0)|

§wr?cos® (k,xo )| 3eqe,n—pocos /7

sin (2k .a) sin (2k,b)
[a+ 2%, {b+ 2,

=—201log

(24)
where the subscripts b and f denote coupling in the back-
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function of B for no coupled waves in the backward direction. €, =2.5,
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Fig. 6. Coupling through a circular hole versus B for e, =2.5, a/b=1.0,
and E{, mode.

ward and forward directions, respectively. If the angle ¢ is
selected using (22), the coupling in the backward direction
will be zero.

Calculated values of the coupling in the forward direc-
tion (when coupling in the backward direction is zero) for
€,=2.5, a/b=10, f=35 GHz, x,=0 and the circular
aperture, as a function of B are shown in Fig. 5. For the
same set of parameters and §=0 (axes of the two lines are
parallel), the variation of the coupling in both the direc-
tions is shown in Fig, 6. It may be noted from this figure
that the coupling in the forward direction is stronger than
in the backward direction. The coupling for the rectangular
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Fig. 7. Coupling through a slot as a function of B for ¢, =2.5, a/b=1.0,
and E{; mode.

slot were also evaluated and found more or less to be same
in both the directions. Fig. 7 depicts the variation of C;
with B.

B. Directivity
The directivity is given by

A+ Bcos8

D=20log A, +B,cosf

T€g€,ntuocosf /g
TegE,m— pocos 8 /m

=201log : (25)

C. Effect of Ground Plane Thickness and Large Size
Apertures

In the derivation of (23)—(25) it has been assumed that
the thickness of the common ground plane ¢ is negligible
and the aperture size is small compared with its resonant
dimensions. The correction factor due to the combined
effects of ground plane thickness and large aperture size is
given by [11], [12]

exp (—277;A/>\c)[1— (;— )2} ”

4]
A 2
1‘(70)

where A is the operating wavelength and A is the cutoff
wavelength of the aperture considered as a waveguide
operating in a mode appropriate to the particular form of
excitation. The factor A4 accounts for the interaction of
local fields on either side of the aperture and has been
determined empirically [14] to be 3 for a narrow slot and
unity for a circular hole. For negligible ground plane
thickness or apertures filled with a dielectric, simple ex-
pressions for the cutoff wavelength of a rectangular slot
and a circular hole are given in Table I. Thus the effect of
large size aperture may be incorporated in (23)-(25) by

CF=
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TABLE I
CUTOFF WAVELENGTHS FOR CIRCULAR AND RECTANGULAR
APERTURES
Aperture Cut off lc
Hode Magnetic coupling Electric coupling
Circular hole TE;) 3.4 €, r
™4y 2.61/e ¢
214
Rectangular TElo 2‘/2; £
slot ‘/E_r
n ™, T
Y ta/n) 2w 2

just multiplying 4,, 4, by CF with A related for electric
coupling and B, B, by CF with A, related for magnetic
coupling from Table 1.

IV. DESIGN OF A DIRECTIONAL COUPLER
When a number of apertures spaced A ¢/ 4 apart are used
in the common ground plane, the total amplitude of the
backward coupled waves is zero and the structure gives rise
to good directivity and tight coupling over the band of
frequencies. For an N element coupler, the expressions for
the coupling and directivity are given by

CZ-ZOlog( § G, ) (26)

N
2 Cfn

n=1

N
> Cbnexp(j2kz{n—1}d)‘
n=1

D=20log

(27)

where C,, and C,,, n=1,2,---,N are the coupling coeffi-
cients in the forward and backward directions, respectively,
and d is the physical distance between two adjacent aper-
tures.

If we express C,, and C,, as products of frequency-
independent amplitude constants (c,) and frequency-
dependent factors (7, 7;):

Cfn :chf Cbn :chb
then (26) and (27) become

N
C=-20log [|T; ¥ cn|) (28)
n=}
D=—C—20log|T,|—20log F (29)
where F is known as the array factor and is given by
N B
F=| 3 c,exp(j2k,{n—1}d)|. (30)

n=1

Design of a directional coupler requires an appropriate
choice of the array factor. If a minimum value of the
directivity over a given frequency band is required, then
the array factor can be designed using Chebyshev poly-
nomials [10], [11].

Consider an example of a five hole 30-dB coupler with
minimum directivity of 30 dB. For ¢, =2.5, f,=35 GHz,
a/b=1.0, and for the dominant E{| mode operation, the
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Fig. 8. Variations of the coupling and directivity of 10-, 20-, and 30-dB
directional couplers with frequency.

value of B (i.e., normalized thickness of the guide) can be
selected depending upon the bandwidth requirement. Sup-
pose we are interested in a frequency band 30-40 GHz,
then B=1.1 will be a better choice as higher values of B
give higher coupling. The calculated values of various
parameters of the image line at 35 GHz are g=b=
1.925mm, A, =7.184mm and spacing between the circular
holes d=A, /4=1.796mm. The radii of the holes for a
Chebyshev taper are r, =r; =0.195mm, r, =r, =0.298 mm,
and r; =0.337mm.

The calculated performance of the directional coupler is
shown in Fig. 8. Over the band (30-40 GHz), the variation
in the coupling is less than 2.4 dB and the directivity is
better than 59 dB. Since at millimeter wave frequencies, it
is easy to accommodate a large number of holes, one can
improve the performance further by selecting higher order
Chebyshev polynomials.

Fig. 8 also depicts the performance characteristics of the
20- and 10-dB directional couplers designed using the same
procedure to operate over the 30-40-GHz band. In this
case, with all other dimensions remaining the same, 7, =7
=0.292mm, r, =r,=0.43mm, and r; =0.484mm for the
20-dB coupler, and r,=r;=0.438mm, r, =r, =0.616 mm,
and r; =0.677mm for the 10-dB coupler.

V. CONCLUSION

This paper presents a design technique for directional
couplers using dielectric image lines. Transmission-line
properties of the dielectric image line together with cou-
pling between image lines through circular holes and rect-
angular slots have been discussed. Analysis shows that as
in the case of rectangular waveguide couplers, the coupling
in the forward direction using a single aperture in the
common ground plane of the image lines cannot be made
zero. Finally, the design procedure developed is illustrated
by application to the design of 10, 20, and 30-dB direc-
tional couplers.
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